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Displacement field of a point force acting on the surface of 
an elastically anisotropic half-space 
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Abstract A ring integral expression is presented for the Green tensor pert3ining to the static 
displacement field of a point force acting on the surface of an elastically anisotropic half-space, 
It is derived as the low-frequency limit of the dynamic Green tensor. The expression is suitable 
for rapid computations. and illustrative numericd results we presented for a semi-infinite (001)- 
oriented silicon crystal For surface displacements the Green tensor decomposes naturally into 
symmetric and antisymetric parts, The ring integral for the symmetric part on be performed 
analytically, yielding an algebraic result. Simplifications brought about by material symmetry 
are discussed. 

1. Introduction 

Green function methods are widely used in treating static and dynamic problems in elasticity. 
Applications include calculating the strain fields surrounding dislocations, cracks, inclusions, 
voids and other imperfections in bounded and infinitely extended elastic solids, and using 
this information to determine the interactions between individual defects and their interaction 
with boundaries [l]. Green functions describing the displacement response of solids 
to various forms of external loading are of direct relevance to indentation problems in 
mechanical testing and civil engineering calculations. There is also considerable interest at 
present in elastodynamic Green functions [2-6]. 

Two-dimensional plane strain problems are elegantly handled by the Stroh formalism, 
and have received considerable attention (see, for example, the papers by Ting and other 
authors in [7]). There has also been progress on a broad front in the solution of three- 
dimensional problems. As early as the last century explicit closed-form expressions 
were derived by Kelvin [8] for the displacement field of a point force in an infinite 
isotropic elastic continuum, and by Boussinesq [9]  for the displacement field of an 
isotropic half-space acted on by a force at its boundary. In this century these results 
have been generalized in various ways by a number of authors. Mindlin [lo] solved 
the problem of the displacement response of an isotropic half-space to a buried force, 
and Rongved [ 1 I] treated the corresponding problem for two joined elastic half-spaces. 
Layered media have been treated by a number of authors (see [I21 and references 
contained therein), and there have been generalizations of these results by Pan and Cbou 
1131 and others to a transversely isotropic half-space with the zonal axis normal to the 
surface. 
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The Green functions of anisotropic elasticity are seldom found expressed in a closed- 
form in terms of elementary functions. They are usually obtained by integral transform 
methods, and there are difficulties in evaluating the inverse transform completely by 
analytical means because one arrives at an integrand involving the roots of a sextic equation. 
We exclude from this generalization transverse isotropy, which in many respects is more 
akin to isotropy than to general anisotropy, and other cases of special combinations of 
elastic constants for which the sextic equation can be factored. For certain applications, in 
particular where the spatial Fourier transform of the force distribution is conveniently at 
hand, a Fourier integral representation of the Green tensor is a common starting point for 
calculations. A threedimensional integral representation of the Green tensor for the infinite 
anisotropic elastic continuum has been widely used by Mura and others [l]. Recently 
Walker [14] has derived an expression for the Green tensor of an anisotropic half-space 
acted on by a buried force. His result takes the form of a combination of a triple Fourier 
integral, which is the Green function for the infinite continuum, together with a quadruple 
Fourier integral, which describes the displacement field, which, when combined with the 
first, leaves the surface traction-free. 

For numerical evaluation of the Green tensor, an integral representation of lower 
dimension is desirable. Lifshitz and Rosenzweig [I51 first showed that the Green tensor for 
the infinite anisotropic continuum could be expressed in the form of a one-dimensional 
ring integral taken around the observation direction, and variations of this result have 
been reported by a number of other authors since then [6.16,17]. The frequency and 
time domain dynamic Green tensors are expressible as a combination of a surface integral 
over the unit hemisphere centred on the source-receiver direction together with a ring 
integral around the periphery of this hemisphere, which reduces to the ring integral 
in the static limit [S,6]. WiUis [I81 has formally solved a broad class of self-similar 
problems in elastodynamics, including the dynamic response of an anisotropic half-space 
to surface loading which can be expressed as a homogeneous function of position and 
time. 

In this paper we derive an expression for the static displacement field of an anisotropic 
half-space subjected to a static concentrated point force acting on the surface. The 
expression takes the form of a one-dimensional ring integral, and is suitable for rapid 
numerical computations. It is obtained as the low-frequency limit to the corresponding 
frequency domain dynamical Green tensor. Our method has certain features in common 
with that of WiIlis [18], although we are not treating the homogeneous problem. Our 
derivation could be simplified by framing it in terms of purely elastostatic considerations, 
but we have obtained it in the course of investigations into the dynamic behaviour 
of anisotropic solids, and it seems to us that there is some value in presenting the 
derivation from this perspective. We express the dynamic Green tensor as a surface 
integral over all values of slowness 811 parallel to the surface of the half-space. In 
the static or low-frequency limit the integration with respect to the magnitude of 81, 

can be done analytically. The remaining integral over the direction of 811, in general, 
requires numerical methods for its evaluation, since the integrand is an algebraic 
expression involving the roots of a sextic equation. For surface displacements there 
is some simplification in that the Green tensor decomposes naturally into symmetric 
and antisymmetric parts. The ring integral for the symmetric part can be performed 
analytically, yielding an algebraic result. By way of a numerical example, we compare 
Green functions for a semi-infinite (100)-oriented silicon crystal with those of the infinite 
continuum. 
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2. Formulation of the problem 

We consider an anisotropic elastic half-space occupying the domain x3 > 0. A time 
harmonic concentrated point force 

~j (s l l ,  t )  = f,S(q)e+" (1) 

of frequency w acts on the surface of the half-space at the origin. f j  are the Cartesian 
components of the amplitude of this force and S ( q )  = S(xl)S(x~) is the two-dimensional 
delta function (see figure 1). Within the half-space the displacement field u(z)e-i" is 
governed by the Christoffel equations [19] 

where Cresm is the elastic modulus tensor for the medium and p is its density. A solution 
of (2)  is required that satisfies the boundary conditions, i.e. yields a traction force at the 
surface equal and opposite to the applied load, and only consists of out-going waves, i.e. 
either homogeneous waves with ray vectors directed into the half-space or inhomogeneous 
waves which decay exponentially into the half-space (evanescent waves). It is in fact only 
the latter that will concern us as o is allowed to go to zero. 

Figure 1. Cmrdinare system used in 
calculations 

We proceed by expressing the delta function in (1) in terms of its Fourier transform, so 
that 

where ki = (kl , kz) is the component of the wavevector parallel to the surface. The response 
to each Fourier component of the force is a linear superposition of three out-going plane 
waves which phase match in the surface with that component, giving a displacement field 
of the form 

where k(") = (kl.kz.kr'), U(") and r. are the wavevectors, polarization vectors and 
amplitudes of the three out-going waves labelled by the index n. respectively. The U(") are 
the solutions of [I91 

(Crtrmsi (") sm (8) - pS,,JU!") = 0 (5) 
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where do) = k(")/w = (SI, SZ. 5:)) are the acoustic slownesses of the three waves. $", 
for given sII = kll/w, are the three roots of the characteristic equation 

IC,&,SlSm - P M  = 0 (6) 
which correspond to out-going waves. The remaining three roots of this sextic equation are 
discarded as they correspond to incoming or exponentially diverging waves, which do not 
satisfy the boundary conditions. For [sill >> Ip/C,bml the three s:' are complex. 

The strain field that uj(k , ;  z, I) gives rise to is 

and the traction force at the surface is given by the associated stress components 

where 

The symmetry of  CL^^, with respect to the interchange of p and q has been used to equate 
the two terms in (7) thereby eliminating the factor of f .  The traction force is equal and 
opposite to the corresponding Fourier component of the external force acting on the surface 
(equation (3)). from which it follows that 

3 -1 r,, = - ( ~ - ' ) " ~ f i  . 
4rrziw ,=, 

Combining (4) and (10) and integrating over kll, the displacement field due to F(x1. I) is 
found to be 

3 

u ; ( z ,  I) = C ~ j j ( z ,  w)fie-'"' (11) 
j=I  

where 

is the frequency domain dynamic Green tensor. On changing the integration variable to 
sll = kll/w one obtains 

where 

Q?!)(SII) V = (A-')njU/'). (14) 

The behaviour of Q;'(q) for small SI, is fairly complicated, displaying infer alia a pole 
at the Rayleigh slowness, but this will not concern us here, since we will make use only of 
the relatively simple limiting behaviour of Qf:'(sll) as sll --f 03. 
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3. Static limit 

We obtain the static Green tensor G L j ( z )  by taking the limit w + 0 of G i j ( z ,  o): 

7909 

We proceed by dividing the domain of integration into two portions, one contained within 
a circle cenfred on the origin and of radius so which is large compared to the Rayleigh 
slowness s~ in any direction, and the other lying outside this circle. The integral over 
the inner domain is finite, and because of the factor io in (E), its contribution to G i j ( e )  

vanishes in the low-frequency limit. We therefore need only consider the integral over the 
outer domain. A change of variable to s and $, where SI = scos($) and s2 = ssin($), 
yields 

The limiting behaviour of sf'(s, $) and Qj',"'(s, $) for large s allows the integral over 
s to be done analytically. For s > so all terms in the slowness equation except those of 
degree 6 in s and s3 can be neglected. This is equivalent to taking the density to zero, and 
transforms the elastodynamic problem into an elastostatics one. By dividing through by 
s, one arrives at a sextic equation for s3/s, whose coefficients are functions of the elastic 
constants and $ only. The roo& all occur in complex conjugate pairs, and for out-going 
waves the three roots are chosen whose imaginary parts are positive and thus correspond to 
inhomogeneous waves which die off exponentially into the half-space. These roots can be 
expressed in the form 

s:' = (a(")(+) + i@"(S))s 

a("'($ + x) = -a(n)($) 

(17) 

where a($) and j3($) have the cyclic properties 

p($ + x) = B'"'($) (18) 

so that dn) -+ -.&* and an out-going wave is retained on the reversal of q. 
Equation (5) shows on reversal of .q that U(") -+ U")', equation (9) shows that 

A,. -+ -A? /'I and hence (A- ' )a j  -+ - (A-')*. ,  and (14) shows that QF + -e:',")*. 
Furthermore, Q&) is unaffected by the normalization of the U("), and for large s is inversely 
proportional to s, and so sQjY' is independent of s and can be expressed in the form 

(19) seij (") - - aij (n) ($1 + ibjy)($) 

n) ($ +a) = -U$)($) 

where a$)(+) and bj;)($) have the cyclic properties 

(20) b$'($ + H )  = b!y)($). 

On substituting these results into (16) and carrying out a change of variable from s to 
y = S O ~ ( " ) X ~ .  we obtain 



where 6 and 4 are the polar angles describing the direction of Z. The yh) satisfy the 
condition 

y y @  + n) = -y'"'(@). (23) 
As OJ -+ 0, the lower l i t  of the integral with respect to y goes to zero, and this integral 
can be done analytically, leading to the result 

Because of the cyclic properties of a$'. bjy), j3'"' and y(") ,  the imaginary part of the 
integrand changes sign on advancing 8 by a, and so integrates out to zero. The real part of 
the integrand returns to the same value on advancing @ by a, and so the integral may be 
restricted to the interval [O, n] and doubled. The Green tensor is thus real, and is given by 

4. Surface displacements 

In order to calculate the surface displacement, the limiting behaviour of the integral in (25) 
as x3 -+ 0 has to be ascertained and this, as we see below, leads to the cancellation of the 
divergence associated with the factor l /x3 in front of the sum. Near the surface .9 IT n/2, 
so sine m 1 and 0 < cos 0 << 1, and so from (22) 

and is very large except where cos(@ - 4) = 0. 

given, respectively, by 
In the surface, G i j ( q )  may be decomposed into symmetric and antisymmetric parts, 

(28) 
This follows from Betti's reciprocal work theorem, which for points in the surface implies 
that G i j ( q )  = G j i ( - q ) .  Reversing the direction of zll is e uivalent to advancing 4 by a ,  

since they do not depend on o. In the limit as cos0 -+ 0, the only contribution to G;(q) 
arises from integration over a small interval around @ = 4 + a/2 or @ - a/2, whichever 

and according to (26) this changes the sign of y("), while a:; 8 , b;) and p"' are unaffected, 
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lies in [O,n]. Here we may take a!"), bjy' and 6'") to be constant, and approximate 
cos(@-@) X @ -@in/Z,  so that &{is linear in @. On changing the integration variable 
to yb), p(")cose cancdls out and we obtain 

The integral is equal to x and so 

Thus, G;(q)  and hence the diagonal components of G i j ( q )  are determined algebraically 
from the values of bjy) in the direction @ = @ If: n/2, and as expected are inversely 
proportional to 1x1 = lqI. 

The antisymmetric component is given by 

where P denotes that the principal part is taken on integration through @ = @ & n/2. 
In general, C; has six independent components and Gfi has three, but the existence of 

material symmetry can reduce these numbers. Thus, for example, if the (100) and (010) 
planes are symmetry planes (orthorhombic, tetragonal, hexagonal and cubic symmetry and 
isotropy permit this) then the following relations hold on reflecting through the (100) and 
(010) planes and applying Betti's theorem: 

G I ~ ( X I , X Z )  = -GI~( - -xI ,xz )  = - G I ~ ( - x I .  - X Z )  = - G ~ I ( x I , x z )  
GZ3(XI,X2) = -GZ3(XI, - X 2 )  -G23(-Xlr - X Z )  = -G32(Xl,X2) (32) 

It follows from these relations that Cs3 = G L  = 0 and Gt2 = 0. There is further reduction 
for XI in a symmetry plane. Thus for x2 = 0, G &  = 0 and G& = 0. 

Wu e2 al [201 have derived an analogous result to (30) and (31) for two-dimensional 
elasticity, reducing the symmetrical component of the surface displacement gradient due to 
a distribution of line forces to an algebraic expression, and the antisymmetrical part to a 
one-dimensional integral. 

G I ~ ( X I , X Z )  =-GIz( -xI ,xz)  = +GIz(-xI, - X Z )  = +GZI(XI,XZ). 

5. Numerical example 

We have used (25) as the basis for numerical calculations on anisotropic as well as isotropic 
solids, using the trapezoidal rule for the integration. For isotropic solids the numerical 
results are in agreement with well known algebraic formulae found in Landau and Lifshitz 
[211 and elsewhere. 

Figure 2 shows the variation of the Green tensor components GII  and G33 with 
direction in the (010)-plane of a semi-infinite silicon crystal with surface parallel to the 
(001) crystallographic plane, compared with the corresponding components GE and CZ of 
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0 10 20 30 40 60 60 70 80 90 

Angle from [OOl] (degrees) 

Figure 2, Angnlx dependence of G I ,  and Gjj in the (OIO)-plane of a silicon half-space with 
(001)-oriented boundary. compared with the corresponding components GE and GO for lhe 
infinite continuum. Elastic mnsmts for the calculation are from [ZZ]. 

the Green tensor of the infinite continuum, The latter has been calculated using the ring 
integral expression from [6] 

where the integral is taken with respect to the direction in the plane perpendicular to x, and 
A!") = Uy)U,!"). The half-space Green functions, as expected, are about a factor of two 
larger than the infinite continuum ones. Another important difference is that while GpP(6') = 
Gg(90' - e) because of the material symmetry, the corresponding components of Gij are 
not related in this way, because for the half-space the X I -  and x3-axes are not equivalent. 
We also note that, because the (001)-plane is a symmetry plane of the infinite continuum, 
GE and Gg are unchanged by reflection through that plane, implying that dGg/dQ + 0 
and dGg/dB -+ 0 as 6 -+ 90". This is not true for the half-space, as evident in figure 2, 
although the limiting value of dG33/dB is fairly small in this particular example. 

Figure 3 shows the angular dependence of Gij in the (001)-oriented surface of a silicon 
half-space. Gjj retains the 4-fold symmetry about the [OOlI-axis and the (loo), (110). 
(IiO), and (010) symmetry planes. The symmetry operations have to be applied both to 
the angle and to the subscripts of Gii, and thus, for example, Ggp(0) = Gps(90" - e), 
GII(B) = G22(9O0 - 0) and GI,(@) = Gs(90" - e). 

' I  
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Figure 3. Angular dependence of Gij in  the (001)-oriented surface of a silica" half-space. 
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